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A novel constitutive model of magneto-sensitive rubber in the audible frequency range

is presented. Characteristics inherent to magneto-sensitive rubber within this dynamic

regime are defined: magnetic sensitivity, amplitude dependence, elasticity and

viscoelasticity. Prior to creating the model assumptions based on experimental

that not only does the rubber display a strong amplitude dependence even for small

strains, but also the magnetic sensitivity is strongly amplitude dependent. The second

and third are, respectively, that the elastic component is magneto-sensitive, whereas

the viscoelastic dependence on magnetic induction appears to be small. Thus, the model

is developed from these assumptions and parameters are optimized with respect to

experimental values for one case and subsequently validated for others; a very good

agreement is obtained.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The term intelligent or smart materials was coined some 20 years ago and has become a common denominator in fields
previously considered disparate—such as medicine and mechanics—by linking mechanical, physical and chemical properties. It
is through the possibility to alter one material property to obtain a change in another one, thus seaming together functions of
materials that have previously served separate purposes, that new dimensions arise in terms of material behaviour. Narrowing
the wide concept of intelligent materials down to one certain subclass, namely that of magneto-sensitive materials (MS),
research was started in the end of the 40s by Rabinow [1] who was working on magneto-sensitive fluids while concurrently
Winslow [2] was working on electro-sensitive (ES) fluids. In response to their discoveries research on MS and ES materials
gained momentum, but focus has until recently remained on ES materials. Nevertheless, MS materials have proven more
commercially successful and over the last years their large potential have been widely recognized; this has lately prompted a
large number of research reports on MS fluids and solids alike [3–11]. Magneto-sensitive rubber has become the subject of
much research because of the wide presence of rubber in applications such as for instance bushings and engine mounts; the
interest lies in the capability to dynamically change the rubber sample stiffness and damping, achieved by applying a magnetic
field over a rubber sample containing iron particles. The application of a magnetic field gives rise to a magnetic dipole–dipole
interaction between the iron particles causing the apparent changes in stiffness and damping.

The quasi-static behaviour of MS rubber has lately been studied extensively [12–17]. On the other hand, the dynamic
properties, ranging into the audible frequency range, have been given less attention. No models known to the authors include
ll rights reserved.

+46 8 7906122.

i@kth.se (L. Kari).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2010.09.010
mailto:pblom@kth.se
mailto:leifkari@kth.se
dx.doi.org/10.1016/j.jsv.2010.09.010


P. Blom, L. Kari / Journal of Sound and Vibration 330 (2011) 947–954948
viscoelasticity in their theories. Nonetheless, considering the above mentioned examples of engine mounts and
bushings—these are frequently subjected to vibrations ranging far into the audio frequency range—merely the quasi-
static properties are not sufficient in describing the rubber behaviour. Because of the viscous nature of rubber the viscoelastic
characteristics need also be incorporated in order to properly describe its complex characteristics. Another rubber feature
that arises from a phenomenon referred to as the Fletcher–Gent effect [18]—the dependence of stiffness on strain
amplitude—has so far been omitted from MS models in general. Neglecting its influence is normally justified for unfilled
rubber subject only to small strains. However, in recent publications [19–22] the amplitude dependence is shown to be an
important feature for MS rubber even at small strains. Moreover, magnetic sensitivity is shown to be strongly amplitude
dependent, why the inclusion of such effects in a model is essential to accurately reflect the physical phenomena. While
beyond the scope of this work, a correct model will also provide valuable guidance when delving into the microscopical
world trying to comprehend the underlying mechanisms ruling the macroscopical behaviour. The goal here is thus to create a
phenomenological model correctly describing the different physical phenomena inherent to MS rubber in the audible
frequency range, including viscoelasticity, amplitude dependence and also, the amplitude dependent magnetic sensitivity.

2. Model

The magneto-sensitive rubber is assumed homogeneous at the length scale considered, isotropic at no applied magnetic
field and non-ageing while confined to isothermal conditions at room temperature—during the experiments the rubber
temperature increase was within one degree. The study is furthermore confined to small strains excluding finite
deformations, as the prime focus is on the small strain audio frequency applications at no static prestrain. The total stress
response is assumed to be additively decomposable into three parts depending on time t,

t¼ teþtveþtf , (1)

where the elastic stress teðtÞ is linearly related to the instantaneous strain gðtÞ, the viscoelastic stress tveðtÞ is linearly
related to the history of the strain rate and the friction stress tf ðtÞ is nonlinearly related to the strain.

It is often desirable to study these relationships in the frequency domain where expressions are largely reduced in size
and calculations simplified, especially if linearity can be assumed. This can be readily done without any loss of information
for the elastic and viscoelastic components of linear nature. The nonlinear frictional component on the other hand, will
react to a single frequency sinusoidal strain by yielding one stress component of the same frequency as the input, and an
infinite number of overtones of odd multiple order of that input frequency. These overtones, however, decay rapidly in
amplitude and can therefore be dropped in analyses when studying linearized relationships between input and output; the
linearized shear modulus being an example of this. Once that linearization has been performed, the following frequency
domain relation can be established:

G¼
~tðoÞ
~gðoÞ , (2)

where the ~� symbol is henceforth employed for frequency domain quantities obtained by applying the temporal Fourier
transform ð~�Þ ¼

R1
�1
ð�Þexpð�iotÞdt;o is the angular frequency in radians per second and G the linearized shear modulus in

the frequency domain.
For the discussed relations accurate models exist which are employed in the modeling. Extending these models to

the case of magneto-sensitive elastomers is the goal of this work. The primary challenge consists in determining the
magneto-sensitivity of the respective parts and parameters.

2.1. Elastic part

The elastic dependence is simply described by

te ¼ Geg, (3)

where Ge is the elastic shear modulus.

2.2. Viscoelastic part

The viscoelastic dependence is suitably described by a relaxation convolution integral as

tve ¼

Z t

�1

Gveðt�sÞ
@gðsÞ
@s

ds, (4)

where Gve is a viscoelastic relaxation function obeying lims-1GveðsÞ ¼ 0 and Gve(s)=0 for so0. In particular, the relaxation
function is conveniently modeled as Gve ¼ bIa where the Abel operator kernel

IaðtÞ ¼
hðtÞ

taGð1�aÞ
, (5)
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0oar1 and b40 are material constants, h is a step function and G is the gamma function. This relation is possible to
identify with a fractional derivative example

tve ¼
b

Gð1�aÞ
d

dt

Z t

�1

gðsÞ
ðt�sÞa

ds, (6)

with a minimum number of parameters required to successfully model wide-frequency band rubber properties [23]. This
can numerically be evaluated accordingly

tve � b
Dt�a

Gð�aÞ
Xn�1

m ¼ 0

Gðm�aÞ
Gðmþ1Þ

gn�m, (7)

where tn ¼ nDt,gn ¼ gðtnÞ and Dt is a constant time step used in the estimation process and gðsÞ ¼ 0 for so0.

2.3. Frictional part

The amplitude dependence is expressed by means of a smooth frictional stress model expressed as [24]

tf ¼ tfsþ
g�gs

g1=2 1�signð _gÞ
tfs

tfmax

� �
þsignð _gÞ½g�gs�

½tfmax�signð _gÞtfs�, (8)

where the maximum friction stress developed tfmax and g1=2 are model constants with signð _gÞ yielding the direction of the
displacement. The parameters tfs and gs are updated each time there is a change in shear direction at _gs ¼ 0 as tfs’tf j _g ¼ 0

and gs’gj _g ¼ 0.

2.4. Frequency dependent shear modulus

The relations in Sections 2.1–2.3 are time domain functions. However, for a sinusoidal strain excitation, results are more
easily visualized in the frequency domain why those functions are Fourier transformed in order to arrive at the desired
frequency dependent shear modulus (2). As previously mentioned, overtones will appear in the frictional stress part once it
has been transformed; these will be dropped in order to obtain the necessary linearized relation between stress and strain,
ultimately providing the complex frequency dependent shear modulus. It should be noted that although the shear modulus
derives from a linearized relation, it is nonetheless nonlinear, exhibiting a strong amplitude dependence.

2.5. Parameter values and magnetic sensitivity

Upon application of a magnetic field the material becomes anisotropic as the shear modulus is dependent of the
direction of the magnetic field. Three experimental observations [19–22] form the frames for the inclusion of magneto-
sensitivity in the current model where the magnetic field is assumed perpendicular to the shear direction. Firstly, not only
does the material display a strong amplitude dependence even for small strains—reflected in the choice of g1=2 and
tfmaxFbut also the magnetic sensitivity displays a strong amplitude dependence. This suggests varying the frictional
parameters for an accurate description of that phenomenon. Secondly, the shear modulus magnitude difference between
the zero-field and saturated state at different frequencies appears in experiments to be relatively constant. This leads to the
conclusion that in this model the viscoelastic dependence on magnetic induction can be neglected leaving b and a
unchanged. Thirdly, the relatively small variation of the loss factor with magnetic field suggests that the loss increase that
altering the frictional parameters gives rise to, be balanced by an increase in the elastic modulus Ge. Magnetic sensitivity
should accordingly be introduced in connection with g1=2,tfmax and Ge.

Generally B=B(H), where B is the magnetic flux density and H the magnetic field intensity. The relation is B¼ mH where
m is the permeability of the medium. This can also be expressed as B¼ m0ðHþMÞwhere m0 is the permeability of free space
and M the magnetization. Since B,H and M are perpendicular to the shear direction, M will subsequently appear as a scalar,
only working uniaxially. Since physically, G must be an even function of M, this suggests the use of expressions of even
powers of M; the simplest one being quadratic. Experiments have shown that Ge and tfmax increase with magnetic field,
while g1=2 instead decreases.

The three magneto-sensitive parameters are expressed accordingly

Ge ¼ 1þ
M

Ms

� �2

d1

" #
Ge0, (9)

g1=2 ¼
g1=20

1þ
M

Ms

� �2

d2

, (10)
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and

tfmax ¼ 1þ
M

Ms

� �2

d3

" #
tfmax0, (11)

where m0Ms represents the saturation magnetization—the highest value m0M can assume—and d1,d2 and d3 are real and
positive material constants to be decided. The parameters Ge 0,g1=20 and tfmax0 represent, respectively, the zero state values.
In all, the number of parameters in the model amount to nine, including, apart from the six above ones, also b,a and m0Ms.
3. Results—comparison with experimental results

The parameters Ge,b,a,g1=2 and tfmax are in the initial phase ascribed values; at this stage where M equals zero, the
model represents the behaviour of the material as yet unaltered by the application of a magnetic field. Optimizing
parameters with respect to the experimentally obtained zero-field curves [22] in Figs. 1–8 results in the following values:
Ge0=1.35 MN m�2, b=0.12 MN m�2 sa,a¼ 0:36,g1=20 ¼ 0:00103 and tfmax0 ¼ 0:9 kN m�2. Next d1,d2,d3 and m0Ms are
ascribed values fitting the model to the three topmost curves in Fig. 1 and the corresponding curves in Fig. 2, representing
the smallest strain shear modulus for the three magnetically altered states. These parameters are, respectively, given the
values of d1 ¼ 0:80,d2 ¼ 2:50,d3 ¼ 0:55 and m0Ms ¼ 0:6 T. The modeled results are seen to correspond well with
experimental ones. In Figs. 9 and 10 modeled hysteresis loops are compared with corresponding hysteresis measurements.
Modeled results are plotted in full lines. The parameter values are the same as the ones used in the shear modulus analysis
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Fig. 1. Experimentally obtained shear modulus magnitude jGj (thin lines) and corresponding modeled results (thick lines) versus frequency at induced

magnetic field of 0, 0.3, 0.55 and 0.8 T for NR 33 percent Fe subjected to a shear strain of 0.000085.
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Fig. 2. Experimentally obtained shear modulus loss factor Im G/Re G (thin lines) and corresponding modeled results (thick lines) versus frequency at

induced magnetic field of 0, 0.3, 0.55 and 0.8 T for NR 33 percent Fe subjected to a shear strain of 0.000085.
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Fig. 4. Experimentally obtained shear modulus loss factor Im G/Re G (thin lines) and corresponding modeled results (thick lines) versus frequency at

induced magnetic field of 0, 0.3, 0.55 and 0.8 T for NR 33 percent Fe subjected to a shear strain of 0.00021.
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Fig. 5. Experimentally obtained shear modulus magnitude jGj (thin lines) and corresponding modeled results (thick lines) versus frequency at induced

magnetic field of 0, 0.3, 0.55 and 0.8 T for NR 33 percent Fe subjected to a shear strain of 0.00065.
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Fig. 3. Experimentally obtained shear modulus magnitude jGj (thin lines) and corresponding modeled results (thick lines) versus frequency at induced

magnetic field of 0, 0.3, 0.55 and 0.8 T for NR 33 percent Fe subjected to a shear strain of 0.00021.
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Fig. 7. Experimentally obtained shear modulus magnitude jGj (thin lines) and corresponding modeled results (thick lines) versus frequency at induced

magnetic field of 0, 0.3, 0.55 and 0.8 T for NR 33 percent Fe subjected to a shear strain of 0.0021.
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Fig. 8. Experimentally obtained shear modulus loss factor Im G/Re G (thin lines) and corresponding modeled results (thick lines) versus frequency at

induced magnetic field of 0, 0.3, 0.55 and 0.8 T for NR 33 percent Fe subjected to a shear strain of 0.0021.
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Fig. 6. Experimentally obtained shear modulus loss factor Im G/Re G (thin lines) and corresponding modeled results (thick lines) versus frequency at

induced magnetic field of 0, 0.3, 0.55 and 0.8 T for NR 33 percent Fe subjected to a shear strain of 0.00065.
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Fig. 10. Experimentally obtained time plot at the fixed frequency 1000 Hz of stress versus strain at induced magnetic fields of 0 and 0.8 T and

corresponding modeled results (thick lines) for NR 33 percent Fe subjected to a shear strain of 0.00065.
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Fig. 9. Experimentally obtained time plot (thin lines) at the fixed frequency 300 Hz of stress versus strain at induced magnetic fields of 0 and 0.8 T and

corresponding modeled results (thick lines) for NR 33 percent Fe subjected to a shear strain of 0.0021.

P. Blom, L. Kari / Journal of Sound and Vibration 330 (2011) 947–954 953
yielding results corresponding well to experimental ones. While expected in the sense that the rubber samples subjected
to the stepped sine and hysteresis measurements are the same—the difference naturally being that the measurements are
not performed simultaneously—it does nevertheless lend further credibility to the model since in contrast to the shear
modulus measurements and model, overtones are retained, which if not properly reflected in the model would not yield
the characteristic shape at the turn points of each loop, but rather the viscoelastic shape of a perfect ellipse. The tendency
towards that latter behaviour can be observed in Fig. 10 where the amplitude is smaller than in Fig. 9 and the frictional
component due to its nature tends to a linear loss-free elastic one, since the strain is smaller. In the figures the modeled
loss factor is somewhat higher at low frequencies than for the corresponding experimental loss factor. This is due to the
fact that in the measurements the charge amplifier utilized introduces a displacement phase lag at low frequencies,
causing a slight decrease in loss factor.
4. Conclusion

A model of magneto-sensitive rubber in the audible frequency range is presented. In contrast to the large majority of existing
magneto-sensitive elastomer models, this one involves viscoelasticity. Moreover, it accounts for the nonlinear amplitude
dependence usually neglected in static, quasi-static and dynamic models for small strains. Furthermore, the former feature has
recently been found to be not only very strong in itself, even for small strains—strains are usually of small magnitude in the
audible frequency range—but also very magneto-sensitive, strongly affecting the resultant behaviour. This prompts the presence
of that phenomenon in the model, and indeed, a very good agreement with experimentally obtained results is observed.
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